
tecnical report en.md 2025-03-22

1 / 23

Analysis of Operating System Concepts: OS-
Style Design and Template Implementation

Guide for Web Indexing

Jue Kong

ABSTRACT

The Web Indexing OS-Style Template redefines webpage indexing by treating
the index page as an entry-point operating system rather than a content display
system. It prioritizes intuitive navigation, repository-based storage, and seamless file
access through browser-native tab management. By delegating process and window
management to the browser, this template maintains a minimalist, high-availability
structure that ensures logical consistency. With features like automatic update
reports, card-based layouts, and multi-faceted file stacking, it offers an efficient,
self-contained solution for organizing and accessing project-related resources.

Chapter 1: Concepts of Operating Systems and
Interaction Design

Since its inception, the concept of the operating system has continuously
expanded and evolved. From the early, simple resource scheduling tools to today’s
sophisticated human-computer interaction platforms, operating systems have always
developed around the goal of managing system resources and user activities in an
increasingly intuitive and efficient manner. In order to clarify the specific advanced
interaction design addressed by this project, it is first necessary to define what an
operating system is and to pinpoint its core functionalities.

Fundamental Concepts of Interaction Flow

tecnical report en.md 2025-03-22

2 / 23

Within the context of this project, my definition of an operating system centers
on its role as a gateway for resource indexing and management, rather than solely a
content display platform. Specifically, the core function of an operating system is to
maintain the topological structure of files and manage the lifecycle of various
windows and processes without directly engaging in content presentation. This
design philosophy emphasizes a clear demarcation between the operating system, as
an abstract management layer, and the tangible resources (such as files, devices, or
applications). Such positioning not only aligns with the principles of modular design
but also enhances the system’s overall flexibility and scalability.

In a fully functional operating system, three main types of entry points must
typically be considered: the gateway for system management software (for example,
process management tools like the Command Prompt in Windows); the gateway for
IO peripheral management software (which encompasses controlling keyboards,
mice, cameras, screen brightness, volume, and network connections); and the file
gateway, which not only includes the files themselves but also the applications
designed for opening and editing those files. Although some of these applications
might be partially integrated into the system, their functional roles are clearly
distinguished from the other two categories, as they do not participate in the core
operations of system control.

Separation of Interaction and Retrieval

However, when we attempt to incorporate the first two entry points—system
management software and peripheral management software—into a file-centric
indexing structure, inherent issues arise. The root of these issues lies in the
fundamental difference between interactive operations and retrieval operations:
retrieval tasks (such as opening a file) are closed and well-defined, functioning
solely within the current interface without affecting unrelated resources or other
interfaces; in contrast, interactive operations (for example, adjusting brightness,
volume, or network status) have a global impact and generally cannot be confined to
a single interface or context.

Interactive operations refer to actions performed on a given
element that trigger associated code which alters the state
beyond that element, thereby inducing interactivity among
other elements or even the entire interface; in contrast,
retrieval operations confine their effects solely to the
explicitly selected element, with each involved element
operating independently without causing any additional state
changes.

tecnical report en.md 2025-03-22

3 / 23

For instance, the control center, which is launched by swiping from the edge of
a smartphone screen, exemplifies the design philosophy behind interactive entry
points. This type of entry is intuitively independent of the file system, allowing users
to initiate interactive operations at any time without conflating them with file
retrieval processes. Conversely, if a function such as screen brightness adjustment
were mistakenly integrated into the file indexing structure, a user might
inadvertently trigger brightness control while searching for a file, resulting in
disrupted interaction flow and a fragmented user experience.

Thus, the advanced interaction flow we propose is founded on a strict
demarcation between “interaction” and “retrieval” operations. In this framework,
“interaction” comprises all actions that have an immediate effect on the device or
system state—such as taking a photo (direct hardware control), accessing network
data via a browser (direct manipulation of network resources), or remotely
controlling a drone (real-time operation of external devices). In contrast, “retrieval”
is solely limited to the operations for opening files and their associated applications;
these operations do not induce global state changes and have clearly defined
operational boundaries.

Through this analysis, it is evident that in smart devices, only pure files and the
applications designed to open them are truly suitable for file structure management,
whereas interactive functions should be independently designed as special entry
points to preserve the integrity and clarity of the file structure. This design principle
not only ensures a streamlined internal system architecture and easier configuration
but also provides users with a coherent and efficient interaction experience,
significantly enhancing the operating system's usability and reliability in practical
application scenarios.

Analysis of the App Mode Design Concept

The App Mode converts system management software and most IO peripheral
management software into flexibly configurable, system-level components, thereby
enabling unified access through a global control center. This strategy not only
ensures an intuitive mode of interaction but also clearly delineates interactive
operations from file retrieval tasks. Secondary or backup IO peripheral entry points,
along with various applications responsible for opening files, are consolidated as the
foundational layer above the desktop. Furthermore, the overall topological indexing
structure of files is abstracted into a dedicated "File" app, which is treated as an
independent application within the system. This design effectively differentiates, on
an intuitive level, system control software from general file access applications—
particularly by distinctly categorizing peripheral management software apart from
file-opening programs—thereby further enhancing user interaction efficiency.

tecnical report en.md 2025-03-22

4 / 23

Control Center in Windows 11 (simulated plastic card material)

However, this model exhibits several obvious deficiencies. Once a user
navigates into the file tree, they must sift through a complex and expansive path
structure to locate various files, resulting in reduced operational efficiency and
difficulty in promptly accessing the desired content. Moreover, the model performs
suboptimally in professional scenarios where frequent software switching is required
to handle the same file.

To address these issues, we propose an enhanced optimization: transforming the
singular “File” app into multiple independent file apps, thereby decoupling them
from the traditional file system’s unified root node. Each file or folder can be
indexed via multiple distinct paths, which eliminates redundancy inherent in
conventional single-path systems. For instance, a folder named “Guidelines” could
be associated with several different projects concurrently without duplicative
storage, enabling users to reach the same target through multiple pathways. This
model is particularly suited for multi-scenario utilization of shared resources.

Additionally, it is important to note that, in this context, the file entry—which is
an integral part of the system—must support a variety of opening methods and allow
users to choose their preferred window mode (such as opening multiple instances or
launching a new window) to ensure both interactive flexibility and operational
efficiency.

Constructing a System Logic Aligned with Intuitive User
Operation

Building on the aforementioned ideas, we have gradually outlined a
comprehensive framework that accords with users’ intuitive operating habits. We
have preserved the primary advantages of the App Mode by consolidating all
interactive software—such as process management and IO control components—
into the screen edges or global quick-access areas (e.g., via edge swipes or shortcut
gestures). This strategy effectively eliminates the scattered and unnecessary entry

tecnical report en.md 2025-03-22

5 / 23

points or tools typically found in the sidebars or footers of traditional system
interfaces. Furthermore, we have eliminated the app desktop entry's backup role for
these interactive applications, thereby ensuring that the desktop focuses solely on
hosting “retrieval” type files and applications that are closely bound to them (such as
games or notepads). When a user opens a folder, they can conveniently choose the
desired method: a light tap automatically invokes the default opening mode, while a
long press quickly brings up alternative available options. In addition, file opening
actions are, by default, executed in a new window or popup mode, rendering the
operational logic more intuitive and further enhancing the overall smoothness and
convenience of the user experience.

Edge touch controls in Android serve as a global quick-access entry point.

Special Software Worth Mentioning: Terminal

Within the aforementioned logical framework, the Terminal is a software tool
that merits special attention. As previously noted, the Terminal essentially functions
as a resource manager, executing code through embedded commands to provide an
intuitive and user-friendly interface for software that otherwise lacks a graphical user
interface. This category includes certain applications designed for file opening. In
practical file access operations, we cannot directly select these file openers—due to
their lack of an independent interface. In such cases, it becomes necessary to
combine a specific file opener with the Terminal (cmd) to seamlessly access file
contents and perform subsequent processing.

Another Special Tool: the Configurator

In addition, it is important to highlight another critical software tool: the
Configurator. The Configurator encompasses two primary configuration tasks:
dedicated configuration for specific files and general configuration for non-specific
files. This configuration involves not only determining the default methods for
opening files but also setting various specialized parameters. In traditional operating
systems, the “configuration” function was commonly manifested through a file

tecnical report en.md 2025-03-22

6 / 23

properties (Properties) tool. However, in our system design, we take it a step further
by treating the Configurator as a specialized editor, thereby enabling it to be invoked
and managed in a more intuitive and fluid manner within the file structure.

Properties interface in Windows

It is worth noting that operations such as copying and moving are not
categorized as "editing" within our logical framework; rather, they are more akin to
interactive operations. Such operations should be activated through a unified
control center or quick-access mode that launches a specific editing interface.

Batch Processing

Finally, to facilitate batch operations on files, we have designed a more
convenient handling method. If the viewer itself supports batch file opening (for
example, via the Configurator), users can enter a multi-select mode for files by
simply long-pressing the background area; long-pressing a folder will automatically
select all files within that folder. It is important to mention that this long-press
gesture also falls within the realm of process management for quick interactions,
with the aim of further enhancing operational efficiency and the intuitive
responsiveness of the system.

Chapter 2: A Preview of Simplified Interaction Design
Implemented via the Browser

Building on the previously established system design, we can further isolate
scenarios dedicated solely to viewing and previewing. Within the framework of an
existing operating system, leveraging the basic functionalities of a browser allows
the creation of a more lightweight and easily implemented simplified version for
user experience. In the context of web implementation, we only need to consider one
type of file—namely, file links in URL form. This design inherently eliminates the
complexities associated with bulk file opening, and reduces what would normally

tecnical report en.md 2025-03-22

7 / 23

require system-level process and file window management to simply the browser’s
“open in new tab” operation.

In effect, the indexing webpage adopts an operating system perspective that is
dependent on the browser, serving purely as an index portal for files and resources.
It utilizes the browser along with repository platforms (such as GitHub) to handle
data storage and content display redirection, thereby achieving a highly streamlined
management model. Thanks to this design, we are able to construct a webpage
template that is simple to configure, highly available, and endowed with a self-
consistent navigation flow.

Example structure of the webpage https://kakukuu.github.io/Web-Indexing-OS-
style-Template/index.html

Chapter 3: Building an Intuitive Web Template with
Two Core Layers

This project not only provides a simplified implementation of conceptual
operating system design but also serves directly as a practical template for personal
homepages or project resource distribution platforms. We deliberately abandon the
traditional approach of directly displaying concrete content, instead focusing entirely
on the two core functions of “indexing” and “overview.” Through an intuitive, card-
based layout, efficient and concise navigation flow, and contextual cues throughout
the page, this template creates a unified and harmonious interactive experience.
Furthermore, to enhance the practical value of the template, an automatic update
report feature based on GitHub Pages is integrated, enabling dynamic information
synchronization at minimal maintenance cost.

The following sections will detail the template’s design concepts, architectural
implementation, and practical application methods with reference to the actual code.

tecnical report en.md 2025-03-22

8 / 23

Integrating Flat Interaction Intuition with Unstructured Visual
Elements

Since the screen serves as the medium for information display and interaction,
it naturally accords with intuitive operations based on a two-dimensional space. This
intuition drives us to prioritize visual elements with clear, flat attributes so that users
can perceive and interact with them directly and accurately. Moreover, the chosen
visual elements should not only have distinct flat characteristics but also avoid
complex internal topologies that might confuse interactions with the file system.
Therefore, our template favors naturally unstructured phenomena—such as a
cloudless sky or a pervasive light mist—that inherently lack well-defined internal
hierarchies. These elements can be used as flat backgrounds or supportive visual
layers, thereby establishing a sense of calm and order without interfering with the
intuitive interaction of files and processes. This visual tranquility also helps focus
users’ attention more on content interaction itself.

Various layers of flat design

Selecting the Right Structure for Flat Interaction and Visual
Elements

Given that the screen, as an interactive medium, fundamentally aligns with a
two-dimensional spatial understanding, our initial design prioritizes visual elements
with explicit flat properties to ensure users can intuitively and accurately
comprehend the interface layout. To further reinforce interaction intuitiveness, we
deliberately avoid visual elements with complex internal topological structures that
might cause confusion with file system interactions. Based on this principle, we
favor materials that convey a strong sense of flatness—such as cards, plastic sheets,
or frosted glass—combined with natural, structureless elements like a cloudless sky
or light mist. This strategy achieves visual calm and order while effectively guiding
users to focus on the interaction itself rather than on decorative elements.

tecnical report en.md 2025-03-22

9 / 23

Distinct Layering of the Interaction Section (Extended) and
the Content Section (Pure File Display)

In Chapter 1, we explored the separation between file access and interaction
design. However, during the file indexing process, certain scenarios inherently
require interactive operations (e.g., bulk file opening). This indicates that, while
minimizing interactive elements, it remains necessary to allocate sufficient space for
essential interactive processes. Accordingly, this template further defines its
functional layering by dividing the screen into two primary regions: the lower
“Content Section,” dedicated to file display and indexing to ensure pure information
presentation, and the upper “Interaction Section,” which extends to the screen edges
to support path navigation, file descriptions, and various auxiliary prompts. This
consolidation of interactive components prevents redundant dispersal across the
interface, thereby optimizing user experience and ensuring intuitive operation.

Interaction Section

Content Section

To clearly differentiate these areas, we use a full-span layout that extends the
Interaction Section horizontally to the screen’s edges, creating a visual sense of
boundlessness and extension. This layout naturally accentuates the differences
between the upper and lower areas and effectively directs the user’s focus toward the
top of the screen to rapidly access essential navigation information and file

tecnical report en.md 2025-03-22

10 / 23

summaries. Additionally, the Interaction Section serves as the final cue for the
content area; an “Info Block” placed under a folder’s title, whether presented as text
or a schematic diagram, enables users to swiftly grasp the folder’s contents and
purpose without needing to delve deeper.

Regarding color selection, to ensure visual coherence and clear layering
between these two sections, we emphasize color continuity so that the Interaction
and Content Sections naturally blend yet remain functionally distinct. In line with
this principle, we selected imagery of a pale, humid dusk sky and overlaid it with
card elements. This soft, unified color scheme not only imparts a sense of balance to
the interface but also reinforces the association between file elements and interactive
components, ensuring they coherently coexist in the same visual space while
maintaining their distinct functionalities. Leveraging this design philosophy, the
arrangement of files and folders appears as scattered fragments across the interface,
with the Interaction Section acting as an overlaying informational guide that
provides clear operational cues to users.

Furthermore, we have meticulously designed the background color behind the
cards. Drawing on the natural principles of atmospheric perspective, the background
in the foreground uses more saturated colors to underscore its accessibility and
interactability, while the background in the distance adopts a grayish, low-saturation
tone to intuitively imply that those objects are less directly accessible or operable.
This gradation in color not only enhances the perception of visual depth but also
allows users to immediately distinguish between the primary interactive elements
and the secondary areas, thereby improving overall efficiency and user experience.

Material close-up

Furthermore, this approach allows further enhancement of card content
flexibility to adapt to diverse scenarios. For example, adding a cover image to a
folder title can provide more intuitive visual identification, or in specific cases,
omitting part of the “info block” can reduce information redundancy, thereby
rendering the interface more concise and clear.

tecnical report en.md 2025-03-22

11 / 23

As a highly flexible card display style, this approach is particularly well-suited
for personal research homepages or resource distribution websites. In such scenarios,
rather than showcasing all files directly on the homepage, the focus is placed on
differentiating the featured content or navigation information on the first screen. In
these cases, the interactive section can be expanded to cover the entire screen,
effectively serving as the project cover to enhance the page’s hierarchy and
guidance. This design not only optimizes the indexing structure for greater clarity,
but also renders the user interaction process more intuitive and seamless. In doing
so, the interactive area becomes more than just an auxiliary information layer—it
acts as a key guiding element within the page’s information architecture, directing
users to quickly comprehend the page structure and providing clear navigational
cues when needed.

As a further extension of the aforementioned interactive design, this layout
mode, when appropriately expanded, still exhibits strong compatibility. For example,
we can integrate multiple highly coupled interactive elements into the interaction
section, forming a feature-rich control area that blurs the traditional boundaries
between content display and interactive control. This design enables users to
perform a variety of operations within a single interface, thereby increasing overall
efficiency.

In fact, many modern applications already employ similar interaction methods.
A notable example is the interface layout of NetEase Cloud Music on the iPad,
which exemplifies a highly integrated multi-interaction approach. Its design blends
content display with interactive operations, allowing users to control playback,
browse playlists, and perform other functions on the same screen without the need
for frequent page switching.

However, despite the significant advantages of such a design in certain
scenarios, its applicability must be carefully considered. In file management systems
that prioritize simplicity and intuitive operation, an excessively complex interactive
area can compromise a clear hierarchical structure, making it difficult for users to
quickly locate and access desired functions. Therefore, in our design philosophy, the
use of multi-level interactive elements should be exercised with restraint to ensure
that the interface remains both sufficiently flexible and cleanly intuitive in its
operational logic.

Chapter 4: Further Implementation Details

File Stacking Mode and Dynamic Background Changes

tecnical report en.md 2025-03-22

12 / 23

To handle files with identical names yet differing in functionality or content
more intuitively and efficiently, we introduce the concept of stacking in the
interface. This stacking mode aggregates multiple closely related files or functions
into a visually unified and conveniently operable card stack. In its initial state, the
user sees only the top surface of a single card—thereby preventing interface clutter
(see Figure 1) while effectively conveying the logical and functional relationships
among these files. By clicking or expanding the stack, users can easily access each
file or function and switch between them as needed.

During a single compilation, LaTeX generates a multitude of files with different
extensions

In this stacking interaction process, we introduce dynamic changes in display
layering and color to enhance the interface's intuitiveness. For example, when a user
interacts with a stack of files, the stack’s z-index shifts from 0 (the background
level) to 6 (above all other elements), thereby emphasizing the focus of the currently
active stack. Simultaneously, it gradually darkens to avoid visual interference and
further optimize the user interaction experience.

Collapsed Stack

tecnical report en.md 2025-03-22

13 / 23

Expanded Stack

Multiple cards in a collapsed stack are staggered

Template Element Simplification and Intuitive Optimization
Strategies

Adaptive Card Width Layout

In the design of this template’s interface, we abandon fixed width settings and
instead assign each card element a relative width based on the inherent flat intuition
of the screen. Specifically, for three different screen size categories, the width of
each card is set as a percentage of the screen width. This design approach ensures
that, regardless of the display size, the layout remains consistently stable. Moreover,
because the overall width of the webpage always aligns with the screen width,
horizontal scrolling is eliminated—thereby reducing operational interference.

Especially considering compatibility with external operating system gestures
and navigation methods: if left-right swipes are designated for forward/back
navigation and edge swipes (or vertical gestures on the side) are allocated for multi-
task management, these gestures will not conflict with interactions on interface
elements, ensuring smooth operation and a seamless user experience.

tecnical report en.md 2025-03-22

14 / 23

When the screen width is less than 480px, the folder card nearly fills the screen

Card Keyword Background and Content Cue Design

To visually enhance the information cues on file cards, this template further
introduces a card background keyword system. This system allows keywords or
label content to be displayed in a semi-transparent or light-colored manner on the
card's background layer, enabling users to intuitively grasp the general attributes or
content type of a file without needing to open the card explicitly. This design notably
reduces cognitive load, effectively improves file retrieval efficiency, and enriches the
interface with layered visual cues.

The keyword system can be applied both to individual cards and to the header's
interaction section, thereby achieving a visually coherent experience when managing
folders by matching the two. (As shown)

tecnical report en.md 2025-03-22

15 / 23

Application Effect of the Keyword System in the Interaction Section

Simplification of Traditional Web Elements and Optimization of
Interaction Entry Points

In traditional web design, footers and sidebars are typically cluttered with
numerous scattered tools and entry points, which not only increase interface
complexity but also run counter to our emphasis on streamlined interaction design.
Consequently, this template completely eliminates the dispersed tools and entry
points from conventional footers and sidebars, consolidating all critical links and
tool access points into a unified information area at the top of the page. This
arrangement creates a more centralized, concise, and immediately clear navigation
structure. The information area is presented as simple text links, ensuring a
consistent intuitive interface.

Version Selection

In previous approaches, website version selection (e.g., language or regional
settings) was relegated to other areas of the page—often in the footer or sidebar—
and typically presented as a collection of scattered links or dropdown menus. While
this design technically enables switching, it suffers from fragmentation and
complexity. In particular, footers or sidebars can become cluttered with unrelated
tools and links, thereby increasing the overall interface complexity. This forces users
to dedicate extra cognitive effort to understand the purpose and placement of these
options, especially when the page design lacks consistency.

In contrast, the current approach centralizes website version selection in the
info area at the top of the page, presenting it as linked navigation tags within a single
tab. A map may even be introduced as an interactive index for added clarity. This
method avoids the redundant design of footers or sidebars, resulting in a cleaner and
more efficient page layout.

Webpage Redirection

tecnical report en.md 2025-03-22

16 / 23

In traditional web design, redirection links are often classified as miscellaneous
elements primarily due to their lack of standardized design principles and clear
visual presentation. They are typically distributed in a scattered manner across
various areas of the page—such as sidebars, footers, or the main content—making
them neither intuitive nor easily identifiable. This design forces users to expend
additional cognitive effort when searching for redirection links, and in some cases,
they may even be overlooked. Moreover, the styles and behaviors of these
redirection links frequently differ from those of other page elements, which can
disrupt the overall visual and interaction flow, further fragmenting the user
experience.

Application effects of the keyword system across different cards

Navigation

tecnical report en.md 2025-03-22

17 / 23

Traditional sidebar navigation has long held a prominent position in web
design; however, as user needs evolve, its drawbacks have become increasingly
apparent. Sidebars typically accommodate a multitude of navigation links and tool
access points. Although such designs are functionally comprehensive, they often
lead to a complex interface hierarchy.

To resolve these issues, we propose the design concept of "eliminating sidebar
navigation" by replacing it with fully structured path displays. All navigation levels
are clearly presented within the interaction section at the top of the page, enabling
users to immediately identify both their current location and other indexing paths.
This design not only simplifies the overall layout but also significantly enhances
navigation compatibility with diverse file structures.

Settings

It is especially noteworthy that this template has completely eliminated the
traditional “Settings” option, as most clearly demonstrated by the adaptive display
mode feature. By detecting whether the user's device or system is operating in day or
night mode, the template automatically adjusts the webpage’s color theme, thereby
removing the need for manual switching of display modes.

Night mode display effect

More Exploration

Furthermore, to help first-time users preview some content and spark interest
even without fully understanding the system’s structure, we recommend adding an
interactive feature—such as “Random Entries” or a Recommendation List—next to
the info button. This feature, which functions similarly to the content feed found on
social platforms, can dynamically display a curated or randomly generated set of
items by replacing the info section in real time, thereby significantly enhancing the
user experience and reinforcing promotional impact.

tecnical report en.md 2025-03-22

18 / 23

Additionally, if the external browser and operating system support previewing
files in a minimized window first—only rendering the full view in a new tab when
the user explicitly requires in-depth access—the overall user experience can be
further optimized. This approach allows users to flexibly switch between operation
modes in different scenarios, satisfying the need for swift previews while also
accommodating the convenience of detailed access.

Small window opening design as implemented in Flyme-OS

Font Selection and Visual Experience Optimization

Typography, once considered an elegant art, has gradually been neglected in the
information age. However, this template explicitly differentiates between serif and
sans-serif fonts for various content areas and enhances visual quality through
adjustments in font weight. Additionally, the template utilizes the open-source
Source Han Serif and Source Han Sans fonts, which are loaded via CDN to ensure
both aesthetic appeal and consistency.

Chapter 5: Template Usage Instructions

The following instructions explain the template’s directory structure, the roles
of key files, and how to customize and extend the template to meet your
requirements.

Project Files

Within the overall project structure, all files and resources must maintain the
same hierarchy and paths as shown in the example to ensure that all links and script
references work correctly. The HTML files (such as index.html ,
page1.html , page2.html , etc.) constitute the main structure and

tecnical report en.md 2025-03-22

19 / 23

content layout of the pages; the assets/images folder contains various
images and icon resources. To replace any material within this folder, simply add the
new files into this directory and update the reference paths in your HTML or CSS
accordingly. The css folder includes reset.css , styles.css ,
and responsive.css , which are used to clear default styles, define the
basic layout and visual style, and handle adaptations for mobile or large-screen
environments. For various interactive logic and dynamic page effects, the
javascripts folder contains infoToggle.js ,
commitList.js , copyCommitList.js ,
scrollHandler.js , throttle.js , and main.js , which

respectively control the expansion of the information panel, update list reading and
copying, scroll optimization, and initialization of core interactive functions. If you
do not need specific functionalities, you can selectively remove the corresponding
scripts and delete the relevant HTML references.

Interaction Section

In the design of the homepage example (index.html), the layout of the
interactive section is determined by the index-header element and its
subclass index-header-content . The header-img class is used to
insert a cover image preceding the header-text element. Within the
header-text area, titles, signatures, or path information can be directly

inserted. Meanwhile, the information panel (infoPanel) is initially
collapsed; when the user clicks the icon on the right, it expands to reveal additional
update content or to facilitate navigation. In certain scenarios, you may also embed
practical, clickable labels—such as “Multi-language Versions”—within the
information panel, or utilize JavaScript scripts (for example,
commitList.js) to dynamically fetch and display project update

information, and even support a one-click copy operation via
copyCommitList.js .

On standard pages (e.g., page1.html , page2.html , etc.), a
similar layout is used; however, the interaction area does not use the same class
names as on the homepage but instead is differentiated by names such as page-

header or page-header-content , enabling users to intuitively
perceive that these pages are “sub-pages” or “supplementary pages” of the project.

If an entire folder is associated with certain keywords, the keyword background
(defined by the keywords-background and keywords containers)
can also be applied at the top of the page. This not only provides visual continuity
but also hints at the page theme. The background comprises multiple

elements representing keywords, with varying font sizes to enhance the weight of
the cues.

tecnical report en.md 2025-03-22

20 / 23

It should be noted that the information panel is expanded or collapsed by
toggling the open class—this behavior is initiated and controlled by the
infoToggle.js script. Similarly, the headerImage.js script

manages the toggling of the enlarged class to effect a size transition when
the image is clicked. For more advanced multi-layer interactions, you may introduce
additional scripts at the top level of the page or within the information panel, or even
integrate third-party services such as Google Analytics or Matomo for analysis and
other extended functionalities.

Content Section

Beneath the interaction section, the content section of the page displays various
folders or link cards in a compact card format, thereby concentrating visual focus on
navigation and core resources.

The fundamental structure of each folder card is composed of an <a> tag
linking to its respective folder page. Optionally, a folder card may display a folder
icon through combined
with its adaptive rectangular shape, enabling users to intuitively understand its
function.

Similarly, file cards—presented in a rectangular format—are used to showcase
specific documents or external resources indexed via URL, such as PDFs, GitHub
pages, or standalone online pages. The automatic arrangement of these file cards is
governed by a <div class="card-container lecture"> . In
addition, each <a> tag links to a specific resource, with its link attribute
(target="_blank") dictating that the resource opens in a new tab.

In certain scenarios, multiple files may share the same name yet differ in
content—for instance, different versions of a document or resources in varied
formats. To address this issue, the template provides a file stacking feature. Within a
<div class="card lecture stack"> container, multiple related files

are grouped together and differentiated by icons and suffixes, allowing users to
swiftly toggle between different versions. While each file retains its own clickable
entry, all files are presented on the page as a single card group. A typical application
of this design can be seen in the integration of GitHub code repositories and online
project documentation; for example, one stacked card might link to a GitHub page
(), while another links to
an individual project introduction page (<img

src="assets/images/independent-page.png">). Controlled by
cardStack.js , users can intuitively expand or collapse the stacked content

to enhance the organization and readability of the page.

tecnical report en.md 2025-03-22

21 / 23

We achieve the spacing between cards and the screen edge at different screen
widths by controlling the padding of the card container; therefore, cards must be
placed within the card container element.

A standard card placed directly within the card-container lecture

The stack's layer is positioned between the "card-container lecture" and the
card. When stacking cards, the repeated keyword background can also be moved to
the stack layer to avoid code duplication.

Additionally, all cards support the same keyword background system (<div

class="keywords-background">) as the interaction section, enabling
users to quickly preview content and understand its hierarchical structure.

Note that within the card-container lecture , to avoid layout
imbalance caused by having too few cards on the last row during automatic
wrapping, we have adopted a wrap-reverse strategy along with a reversed
ordering within the row. In other words, the display order of the cards in this section
is the opposite of the order in the HTML source code. If manual adjustments are too
cumbersome, you can prioritize the positioning of certain cards by assigning them
specific IDs (for example, id="card-1" through id="card-9").

tecnical report en.md 2025-03-22

22 / 23

Others

Regarding customization, whether you want to add more folders and cards or
change the visual theme and background, simply modify the corresponding HTML,
CSS, or script files. For multilingual support, you can easily employ AI assistance to
duplicate and adjust the HTML code on different pages, and switch the homepage
via the hyperlinks included in the homepage info section.

When using this template, you typically only need to place the files on any
static web server (such as GitHub Pages, Nginx, or Apache) and then preview the
corresponding HTML page in your browser. If there are errors with file paths or
script logic, icons, scripts, or external links on the page might not load correctly, so
you should promptly verify that the references match the actual file locations. Once
this is resolved, you can further personalize the template to suit your project needs—
such as adding new pages, including additional cards, expanding JS functionalities,
or even removing modules that are not required.

Performance Comparison Test

To validate the advantages of OS-Style Indexing, a simple comparison test can
be conducted. The test involves performing the following tasks across different
indexing methods:

File Selection Time Test: Open five randomly assigned files from a project
using traditional indexing (e.g., README navigation, file explorer) and OS-Style
Indexing. Record the total time taken.

Misclick Rate Measurement: Count the number of accidental misclicks when
selecting files in each indexing system.

Multi-File Access Efficiency: Open and switch between five different files,
measuring how smoothly navigation occurs without disrupting workflow.

Information Density Perception: Observe and note down how much additional
text, menus, or irrelevant elements appear before finding the required files.

tecnical report en.md 2025-03-22

23 / 23

By comparing these results, we can quantitatively assess how OS-Style Indexing
improves efficiency and reduces distractions compared to traditional file access
methods.

